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ARTICLE INFO ABSTRACT

Keywords: Low-cost electronic noses, i.e. arrays of non-specific gas sensors, have many applications for quality assessment
Low cost machine olfaction in the food production, storage and retail industries. Classifying properties of natural products by analysing their
E-nose

volatile organic compound (VOC) patterns allows fraudulent and mis-represented goods to be identified and
removed, before they enter the consumer market. Early results from a small study performed on olive oils
demonstrate that a low cost electronic nose device based on an array of MQ-series SnO, gas sensors has the
potential to correctly classify differing qualities of olive oils, with accuracies in the range 67-77%. Results
confirm that use of sinusoidally varying heater voltage cycles on some MQ sensors improves their sensitivity,
selectivity and susceptibility to drift. By using discrete Fourier transform analysis of the sensor responses, the
unit discriminates between virgin/extra virgin and blended/chemically extracted pomace oils with prediction
accuracies in the range 88-91%. There is also evidence that, with refinement, the unit may be capable of dis-

Counterfeit food products

tinguishing among certain olive varieties. The unit can be assembled for around 30 euro.

1. Introduction

There has been much controversy in recent years over the sub-
stitution of poor quality olive oils in place of virgin and extra-virgin
olive oils. In particular “pomace olive oil”, which is chemically ex-
tracted from olive pulp after normal secondary pressing (Albahari et al.,
2018; I0CC, 1996), has been the subject of European Union health
warnings (EU report, 2005) with respect to the potential carcinogenic
properties of PAHs (polycyclic aromatic hydrocarbons) (Zha et al.,
2018; Mafra et al., 2010). Therefore the development of a low cost,
portable unit to assess the quality of an oil sample in the field would
have commercial advantages as well as impacting positively on con-
sumer safety (Moreira et al., 2018). Many studies of food analysis have
taken place using electronic noses (for example Pascual et al., 2018;
Loutfi et al., 2015; Peris and Escuder-Gilabert, 2009). Specific examples
looking at characteristics such as freshness in dairy products
(Abbatangelo et al., 2018; Suman et al., 2007; Schaller et al., 1999), fish
(Semeano et al., 2018; Haugen et al., 2006); meat (Ramirez et al., 2018;
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Balasubramanian et al., 2008), fruit (Gomez et al., 2006, 2007; Zhang
et al., 2008), vegetables (Cortellino et al., 2018; Riva et al., 2002), oils
(Yang et al., 2018; Garcia Gonzalez and Aparicio, 2002; Gonzalez
Martin et al., 2001) among others, tend to focus on the use of com-
mercially available high-end electronic noses intended for professional
laboratories only, often using offline sampling techniques. However
fewer studies have been directed towards the detection of adulterated,
fraudulent and misrepresented goods (Gliszczynska-Swiglo and
Chmielewski, 2017) such as milk (Yu et al., 2007), peone oil (Wei et al.,
2018) and olive oils (Harzalli et al., 2018; Cosio et al., 2010). Low cost
prototype systems (Majchrzak et al., 2018, Changsongkram and
Nimsuk, 2016; Trirongjitmoah et al., 2015; Macias Macias et al., 2013;
Tang et al., 2010) employing catalytic Taguchi-type (MQ series) gas
sensors, as in this study, usually focus on static heater voltages, often
with highly disparate or distinctive odours.

However the datasheets for some sensors (MQ7 & MQ9 in parti-
cular) recommend switching between two (5.0V and 1.4V) heater
voltages over a 60 + 90 s cycle, with the sensor response being sampled
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at the very end of the 90s interval. This can significantly improve
sensitivity as detection is now possible over a range of sensor surface
temperatures. Whilst sensitivity at lower temperatures is enhanced for
these sensor types, it has been shown that continuous operation at these
lower temperatures allows water vapour to accumulate within the
sensor material, reducing selectivity to only those gases that are water
soluble (Helwig et al., 2009). More recently, there has been a move
towards pulsed, sinusoidal or multi-frequency heater profiles (Vergara
et al., 2009) and the use of fast Fourier transform (FFT), Discrete wa-
velet transform (DWT - a wavelet transform that captures both fre-
quency and ‘location in time’ information), short-time Fourier trans-
form (S-TFT - a technique that divides a long duration time signal into
shorter segments of equal length and then computes the Fourier
transform separately on each shorter segment. The Fourier spectra for
each shorter segment can then be plotted showing the changing spectra
as a function of time) and, to a lesser extent window time slicing (WTS —
a technique in which the time responses of each sensor are multiplied
by four smooth, bell-shaped windowing functions. The resulting traces
are then integrated with respect to time and the resulting areas are used
for comparison) (Yan et al., 2015). Furthermore, many previous studies
have involved heating the samples to between 50 and 80 °C which can
cause rapid deterioration of the sample (Daskalaki et al., 2009). All
results in this report were from readings taken with the sample at room
temperature (18-23 °C).

Thus, the aim of this study was to see if a low component cost
electronic nose design could be sufficiently enhanced by the use of more
sophisticated management and analysis software, to enable accurate
classification of subtle odour differences. In particular, the classification
of olive oil types. For this purpose, several metal oxide (MOQ) gas
sensors were installed in a detection array of an electronic nose pro-
totype. With this device, several samples of varied olive oils were
tested. Simultaneously and in order to contrast the methodologies, a
chemical analysis test was performed for the same samples. Moreover,
the results and conclusions obtained from these experiments have been
included in this paper.

2. Materials and methods
2.1. E-nose components

An electronic nose consists of three principal components, a sample
delivery system (sampling unit), a detection array (gas detection
system) and a data processing unit (pattern recognition software) (Liu
et al., 2018; Gardner and Bartlett, 1999). This report focusses on pre-
liminary results from a study using a detection array comprising 8
different MOQ gas sensors (MQ-2, MQ-3, MQ-4, MQ-5, MQ-7, MQ-8,
MQ-9 and MQ-135). These are manufactured to respond to a wide range
of gases, for example hydrogen, carbon monoxide, LPG, ammonia etc.
(Korotcenkov, 2007; Zaretskiy et al., 2012). Whilst we are not inter-
ested in detecting these specific gases per se, the sensors each respond in
different ways to a wide range of volatile organic compounds (VOCs)
which combine to produce a unique “odour signature”. As individual
MQ gas sensors typically cost around 1 euro each, this allows a com-
plete E-nose system to be built for around 30 Euros, including a simple
Sample Delivery System (sample chamber with air pump or fan) and
Data Processing Unit (Arduino Nano ° microcontroller with USB serial
connection). Software for the Nano was developed in the Processing
language using Arduino IDE’ version 1.6.5. DFT analysis was performed
within Microsoft Excel’. Two dimensional data visualizations (LDAna-
lysis plots) were produced by in-house developed software written in
Visual Basic".

Sample aliquots of 35 mL olive oil each were placed in a 135mL
glass sample chamber connected by 6 mm PVC pipe via PG7 Nylon
cable glands to a separate PP5 (Food Grade Polypropylene) detection
chamber containing the sensor array (see Fig. 1). Another pipe ran to a
0.4 L per min air pump, then back to the sample chamber completing a
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hermetically sealed loop. The sample pipe was set 8 mm above the
surface of the sample, whilst the return pipe was 20 mm above the
surface of the sample. Electronics hardware used in this report is based
on that developed by Voodoometrics, but has been enhanced using
IRF9540 Field Effect Transistors to provide hardware timer generated
PWM heater control. To normalize MQ sensor outputs, 50 kohm trim-
pots were used as load resistors, with trim-pot values adjusted until
each sensor channel gave a response of 2000 mV under steady state,
“fresh air” conditions at 5V heater voltage, at least 1 h after applying
power. In addition to balancing out significantly different sensor type
impedance characteristics, this also provides a degree of normalization
against sensor manufacturing variabilities.

2.2. Dual heater voltage preliminary study

A preliminary study (Oates et al., 2018) which focused on the use of
dual heater voltages on the MQ7, MQ9 and MQ135 sensors, also pro-
vided constant heater voltage data for the MQ2 sensor. The MQ2
showed a typical spiked response within the first 2min of applying
heater power, with the response rising to over 3000 mV before falling
back to around 1900 mV. This was followed by a steady rise of between
100 and 200 mV over the next 20 min followed by a decline of 50 mV
over the following 30 min under “fresh air” conditions. Long term drift
effects showed more than 200 mV change over 48 h, however, changes
were also seen with respect to ambient temperature and humidity
variation.

In contrast, again under constant 5V heater voltage conditions, the
maximum change seen by exposing the MQ2 sensor to extra virgin oil
samples was +225mV, and for pomace olive oils, +50 mV. This re-
sponse/drift characteristic provides too small a differential for absolute
voltage responses to be usable for reliable oil discrimination. Further,
any change in the voltage of the heater supply (caused by load current
variation) was reflected in the sensor response.

2.3. Sinusoid heater based data acquisition system

By comparison, under “fresh air” conditions, typical sensor sinusoid
responses under the conditions of the experiments described in this
study were from 1485mV (trough) to 2425mV (peak), giving a
1955mV DC offset and 940 mV peak-to-peak amplitude; for a typical
pomace olive oil, 1610 mV (trough) to 2800 mV (peak), giving 2205 mV
DC offset and 1190 mV peak-to-peak amplitude; and for a typical extra
virgin oil, 1920 mV (trough) to 3765 mV (peak), giving 2843 mV DC
offset and 1845 mV peak-to-peak amplitude. These results give much
wider differential response for determining olive oil type. Whilst long
term drift of DC offset was seen to exceed 400 mV, rendering absolute
values of little value, many amplitude readings for oil samples were
seen to show remarkable consistency. Further, some sensor responses to
some oil types showed considerable deformity from a true sinusoid,
suggesting a component frequency analysis technique, such as Fourier
analysis, should provide further discriminatory data.

The preliminary study also determined the time constant (time for
sensor reading to fall by 50% after removal of heater power under
“fresh air” conditions) to be approximately 3 s, thus, a PWM period of
the order of 30ms (1% of the time constant) was used to ensure
minimal temperature variation within the PWM period. Tests with an
oscilloscope on the switch mode power supply (SMPS) used to provide
power for the heaters showed, as expected, significant ‘ringing’ (de-
caying cycles of voltage overshoot and undershoot) after a change in
load current of 1.3 A — typical of 8 sensors switching from 5V heater
voltage to OV. This ringing had reduced to less than 1% within 5ms,
thus, a minimum “on” time and minimum “off” time for the PWM cycle
was set to be 6 ms. Failure to minimise excessive transients within the
SMPS can lead to premature component failure, particularly of elec-
trolytic capacitors (Abdi et al., 2013), and thus, the PWM was deemed
to have a theoretical “safe” range of between 20% (6 ms) and 80%
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Fig. 1. Diagram of E-Nose system.

(24 ms) within a 30 ms cycle.

At a 5V heater voltage and a typical heater resistance of 31 Q, each
sensor dissipates of the order of 800 mW raising the sensor surface to a
typical value of 700 K; however for some sensor types, optimum sen-
sitivity occurs between 550 K and 600K (Gajdosik, 2014), and even
lower for other sensor types. Based on this, and the results of the pre-
liminary study, for the sinusoidal experiments reported on here it was
decided to vary the heater power from 47% to 80% and back to 47% in
262 steps each of approximately 450 ms. Thus, the simulated sinusoidal
power cycle took approximately 2 min to complete. To minimise sensor
reading jitter, the 10 bit analogue to digital convertor readings were
synchronised with the rising edge of the PWM heater power signal in a
tight polled loop with processor interrupts disabled ensuring no more
than a few microseconds of alignment variability after a fixed delay. Six
readings were made in immediate succession on each of the 8 channels,
the first reading after a channel change being discarded and the re-
maining 5 summed together producing a result in the 0-5115 range
closely indicative of the sensor trim-pot voltage value in mV. Readings
were temporarily stored in an array, and then output via a serial port at
57,600 baud at the end of each set of 8 sensor channel readings. These
results were then stored on a PC in comma separated variable format
(CSV) for later analysis. As a result of temporarily switching off pro-
cessor interrupts, recorded timestamp values (nominally in tenths of a
second), appear approximately 10% shorter than ‘real-time’ values.

Glass sample chambers containing the oils were typically connected
to the system for at least 10 min, allowing 5 sinusoid cycles for data
collection. Analysis was typically performed on the 4th or 5th cycle to
give the oil/gas concentration time to stabilise in the sensor chamber.
The whole system was flushed with fresh air for at least 10 min between
samples. Multiple samples of each oil were analysed in experiments
conducted over many days during a 6-month period, during which
ambient temperatures varied from 18 to 23 °C, whilst humidity varied
from 25% to 55%. These variations may help to explain the wide range
of sensor readings seen in the “fresh air” analysis results.

2.4. Sensor coefficients and samples

Selected cycles (typically the 4th or 5th after a sample chamber
containing an oil had been attached to the system) of the raw data
readings for each of the 8 sensor channels were subjected to 256 ele-
ment discrete Fourier transform analysis (DFT). This delivered a DC
offset coefficient together with scaled pairs of real and imaginary am-
plitude coefficients for component cosine waves for analysed fre-
quencies corresponding to the base frequency of the heater cycle, plus
higher frequencies of integer multiples above this primary frequency.
The real coefficients correspond to the amplitude of a cosine compo-
nent, whilst the imaginary coefficients correspond to the amplitude of a

sine component (a second sinusoid at the same frequency but at 90
degrees phase shift). An alternative representation of this complex re-
sult is to sum the squares of these components and extract the square
root to deliver the amplitude of a single sinusoid, at a varying phase
angle to the original heater waveform. This amplitude is herein referred
to as the “Abs” value and should be divided by 128 to get the true
component amplitude. The phase angle of this combined sinusoid is
also determinable from the complex coefficients and is herein referred
to as “Theta”, given in radians. As there is discrepancy between the 262
points of the heater cycle and the 256 elements of the DFT analysis, this
can be expected to produce some distortion in the frequency analysis,
however effects on the first 3 frequency coefficients can be expected to
be minimal.

Fourteen different, commercially sourced, Spanish olive oils were
used: 4 types of extra virgin olive oil (2 of which were of named olive
variety — Picual and Hojiblanca), 3 types of virgin olive oil (2 of which
were of named olive variety — Picual and Hojiblanca); 3 types of
blended oil; and 4 types of pomace olive oil (referred to in Spain as
“aceite de orujo”). These are later referred to as: (for extra virgin oils)
VX-0; VX-C; VX-P; VX-H; (for virgin oils) V-C; V-P; V-H; (for blended
oils) B-O; B-Y; B-C; (for pomace/orujo oils) O-L; O-D; O-A; and O-C. One
of the extra virgin olive oils (VX-O) was used after it had been stored in
a half full bottle for over 2 years allowing self-oxidation to increase its
peroxide levels (Morales et al., 1997; Bendini et al., 2009) to see if this
affected E-nose readings. In all, 70 sets of eight sensor response wave-
forms were analysed:4 of each of VX-O, VX-P, VX-H, V-P, V-H, B-O, B-C,
0O-D, O-A, O-C; 5 of each of VX-C, V-C, B-Y, O-L; and 10 of fresh air.

Additionally, free fatty acid content (FFA), peroxide index (PI) and
ultraviolet absorption (k232, k270 and AK indexes) for the 14 oil types
used in this study were analysed to validate the quality of the samples.
These analyses were undertaken following the specific European Union
regulation (EU, 2016). Briefly, for FFA, 10 g of sample were mixed with
ethanol:diethyl ether (1:1) and were neutralized with potassium hy-
droxide 0.1 M. Results were expressed as % of oleic acid. Peroxide index
expresses quantity of peroxides in the sample that produce the oxida-
tion of potassium iodide, so 0.5-2.0 g of sample (depending on the
sample) were mixed with chloroform, acetic acid and saturated solution
of IK and titrated with sodium thiosulfate 0.01 N. Results were ex-
pressed as mEqO,kg™!. Ultraviolet absorption measurements were
undertaken with cyclohexane and quartz cuvettes using an UV-visible
spectrophotometer (Helios Gamma model, UVG 1002E).

2.5. Classifiers

Decision tree classifier ruleset models were developed by using 2
dimensional visual analysis based on a relaxed greedy heuristic (Barron
et al., 2008) on a randomly selected subset of half of the results, with an
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Chemical analysis results: k232, k270 and Ak; peroxide index (PI) (mEqO,kg™'); and free fatty acid (FFA) (%) where EVOO = Extra Virgin Olive Oil and

VOO = Virgin Olive Oil.

k232 k270 Ak Category Pl Category FFA Category
VX-0 2.33 0.17 0.02 Not EVOO 33.97 Not EVOO 0.34 EVOO
VX-C 2.30 0.14 -0.11 EVOO 12.32 EVOO 0.52 EVOO
VX-P 1.92 0.12 —0.04 EVOO 11.39 EVOO 0.28 EVOO
VX-H 1.95 0.20 —0.03 EVOO 10.05 EVOO 0.25 EVOO
V-P 2.14 0.18 —0.02 Voo 10.41 Voo 0.98 Voo
V-H 2.52 0.24 0.01 VOO 12.68 Voo 0.82 Voo
V-C 1.76 0.15 —0.01 VOO 13.49 Voo 0.42 VOO
B-O 1.75 0.29 0.04 Olive 10.53 Olive 0.39 Olive
B-Y 2.18 0.59 0.08 Olive 11.22 Olive 0.17 Olive
B-C 2.04 0.74 0.11 Olive 6.70 Olive 0.45 Olive
O-L 3.79 1.36 0.19 Not Pomace 6.83 Pomace 0.46 Pomace
O-D 4.19 1.18 0.56 Not Pomace 8.53 Pomace 0.28 Pomace
O-A 4.50 1.36 0.16 Pomace 2.38 Pomace 0.47 Pomace
O-C 3.93 1.10 0.15 Pomace 5.43 Pomace 0.56 Pomace

k232 k270 Ak Pl Acidity

<2.50 =<0.22 <0.01 EVOO =20 EVOO <0.8 EVOO

=2.60 =0.25 =<0.01 VOO =20 VOO =20 VOO

- <1.15 =<0.15 Olive <15 Olive <1.0 Olive

- <1.70 <0.18 Pomace 15 Pomace <1.0 Pomace

evenly distributed selection maintained across all oil varieties. Ex-
amples of some of the generated ruleset classifiers are given in the
Analysis and Discussion section. These rulesets were then used against
the whole dataset to produce confusion matrices such as that presented
in Table 3.

3. Results
3.1. Chemical analysis and raw sensor responses

The results of the chemical analysis tests are given in Table 1.

It is clear that the 2 years of storage induced self-oxidation has made
the VX-O oil fail the delta k and peroxide index tests for an extra virgin
olive oil. The blended oil B-O narrowly fails the k270 and delta k tests
for a virgin olive oil whilst the other 2 blends fail by significant margins
and so all 3 are correctly classified as non-virgin olive oil. The claimed
pomace olive oil O-L technically fails the delta k test even for classifi-
cation as a pomace oil, whilst the O-D oil fails the delta k test by a wide
margin. The O-C oil technically passes the tests to allow it to be up-
graded to the classification of non-virgin olive oil, rather than the lower
grade of pomace.

Fig. 2 shows typical sensor response for the MQ2 and MQ3 sensors
for the first hour and a half following the power up of the system.
During this time the system was exposed to samples of blended oil B-O

at timestamp 11,919 (1310 s), virgin Picual oil V-P at timestamp 23,083
(2539 5), pomace oil O-A at timestamp 34,356 (3779 s), and extra virgin
Picual oil VX-P at timestamp 45,535 (5009 s). The MQ2 sensor response
can be seen to change in both DC offset and amplitude, both typically
increasing by a significant amount in the presence of higher quality oils.
The MQ3 response, however is seen to decrease in amplitude and also
deform in shape. The DC offset, however, increases in all cases.

3.2. Primary frequency responses

Fig. 3 shows the spread of results from the DFT analysis for the first
coefficient from the MQ2 sensor across all 14 oils and “fresh air” con-
ditions. The spreads are from different samples of each oil variety. The
maximum, minimum and mean values are plotted. Both representations
are shown, firstly the fixed phase Cosine and Sine amplitudes (Fig. 3a
and b), and secondly the variable phase Abs amplitude and Theta phase
angle (Fig. 3c and d). For higher quality oils, the first frequency MQ2
Cosine coefficients become more positive, whilst the first Sine coeffi-
cients become more negative. Alternatively, in terms of a single sinu-
soid, amplitudes become greater and phase shift becomes more distinct,
although there is exceptionally large variation in the variable phase
angle for the “fresh air” category (SD for Fresh Air being 0.143rad vs.
an average of 0.054 for the oils).

This response is similar for other sensors for example MQ7 and

Typical Early response and Deformations
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Fig. 2. Typical sinusoidal waveforms MQ2 and MQ3 deformation.
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MQ135. Fig. 4a and b show Abs1 and Thetal for the MQ135 sensor. It is
interesting to note that blended oil, B-O, shows closer similarity to
virgin oils in these and the previous plots, and perhaps this is not sur-
prising as B-O only narrowly fails the k270 and delta k tests, otherwise
it could be classified as virgin from a composition view-point. This is in
contrast to some results seen at the secondary frequency, see later
subsection for Abs2 MQ2 and Theta2 MQ8 below. The Thetal MQ135
(Fig. 4b) and Thetal MQ2 (Fig. 3a) coefficients seem to favour dis-
crimination of the Hojiblanca variety of olive (oil sample types VX-H
and V-H) and this is explored in the Analysis and Discussion section.

3.3. Secondary frequency responses

Analysis of the MQ3 response waveforms shows that no clear dis-
tinction of amplitude can be observed between virgin and non-virgin
oils (Fig. 5a) at the primary frequency; however, as Fig. 5b shows,
deformation of the MQ3 sinusoid (represented by the amplitude of the
secondary and greater frequency coefficients) is characteristic of most
virgin oil samples; however extra virgin oil VX-O, virgin Picual oil V-P
and blended oil B-O show significant variabilities.

For some sensors, at the secondary frequency, the amplitude of any
deformation remains roughly constant across all types, but there is
significant phase shift differences between oil types. This is shown here
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for MQ135 in Fig. 6a and b.

For other sensors (for example MQ2 and MQ8), either second fre-
quency amplitude or secondary frequency phase shift can help distin-
guish between virgin and blended oils (see Fig. 7a and b).

3.4. Pomace oil detection

Although results shown so far can clearly distinguish extra virgin
and virgin olive oils from pomace olive oil (orujo oil), it is important to
find a coefficient (or combination of coefficients) that show that an oil
specifically does contain markers from pomace oils and this is explored
in the Analysis and Discussion section. This would allow detection of
oils contaminated or deliberately adulterated with pomace oil that was

Abs2 MQ2
25000 + +
20000 T + -|- ‘\>
e
15000 T =
10000
5000

VKO VE-C VX-PVX-H V-C VP VH BO BY BC OL OD 0O-A OC FA

Max  Min

a)

Mean +

not otherwise declared on the packaging. For this to be true, it is ne-
cessary to find a test that shows a distinct change in a sensor reading
coefficient for pomace oils from the “fresh air” condition. The phase
shift of the primary frequency for the MQ4 sensor appears to show this,
whereby the variable phase angle “Thetal”, is seen to generally become
more negative for pomace oils than under “fresh air” conditions, see
Fig. 8a. This is also true to a less defined extent with Thetal MQ8 (see
Fig. 8b). Higher quality oils give less negative phase readings, whilst
blended oils give results which straddle both positions.

Further work is needed to see if the large variability in test results
for the same oil type can be reduced, and this is discussed in the fol-
lowing section; however, variability across sensor types and coefficients
is not uniform as is demonstrated by Fig. 3d for the MQ2 sensor (or 4b

Theta 2 MQS8

VX0 VX-C VX-P VX-H V-C V-P VH B-O B-Y

Max  Min

b)

B-C O-L OO0 O-A OC FA

Mean +

Fig. 7. a and b — Abs2 MQ2 and Theta2 MQS8.
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Fig. 8. a and b - Specific detection of pomace

for MQ135) where, in contrast to Fig. 7a (or 6b for MQ135), low
variability is seen in higher quality oil samples with larger variability
seen in poorer quality oils.

4. Analysis and discussion

This section discusses ways in which the sensor DFT coefficient
results can be used to determine olive oil type and variety by using
decision tree ruleset classifiers. It also examines in more detail the high
levels of variation seen in some of the sensor coefficients for “fresh air”,
discussing possible causes for this and suggesting possible solutions to
be explored in future experiments.

4.1. ANOVA results for oil type determination

Fig. 3 shows that it is possible to determine whether an oil sample is
virgin (including extra virgin and virgin oils) or pomace oils based only
on the MQ2 first frequency responses, there being no overlap between
Absl MQ2 readings in the virgin and pomace categories. This is cor-
roborated by other sensor responses (for example Fig. 4 for MQ135).
When the Absl MQ2 coefficient values were grouped into 5 classes:
extra virgin; virgin; blends; pomace and fresh air, this gave typical
group sizes of 14 samples, for which the mean and sample standard
deviation were calculated. These results are given in Table 2. For a
normal distribution, 98% of the population can be expected to lie
within plus or minus 2.33 standar deviations of the mean. Table 2
shows that the lowest value of mean —2.33 standard deviations for
extra virgin and virgin oils is 89823.67, implying that less than 1% of
the true population would give readings lower than this value, whilst
the highest value of mean +2.33 standard deviations for pomace oil
was 89565.17 implying that less than 1% of the true population would
give readings greater than this value. As these two limits do not overlap,
this gives a good degree of confidence that the value of this coefficient
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oils by MQ4 and MQ8 Thetal coefficients.

can be used to distinguish between virgin/extra virgin and pomace
olive oils. Blended oils, however, had a much wider variance, and as the
non-overlap limit between lowest mean —1 standard deviation for
extra virgin is at 105,787, this leaves a projected 16% of the true po-
pulation below this value, and for highest mean +1 standard deviation
for blended Oils at 105767.7 this leaves 16% above this value, as-
suming normal distributions.

Considering the Absl MQ2 sensor coefficients for the 5 classes
(extra virgin, virgin, blends, pomace and fresh air), there was a stati-
fically significant difference between the groups as determined by one-
way ANOVA which delivered a p value of less than 0.001. According to
Tukey's least significant difference test, values for clasess extra virgin
and virgin, and classes pomace and fresh air, were not significantly
different (p > 0.05) in themselves, supporting the hypothesis that the
data can be considered to come from 3 significantly different classes:
"extra virgin & virgin", "blends" and "pomace and fresh air".

Specific detection and classification of blended oils as a class based
on sensors readings is clearly more problematic — all three brands
sampled here are classified as non-virgin by chemical analysis.
However, the use of second frequency coefficients such as Abs2 MQ2
and Theta2 MQ8 (Fig. 7a and b) show some possibilities for dis-
crimination, particularly for oil B-O. It is perhaps not surprising that
different brands of blended oils show such differences, as the fact that
they do not have to conform to the European standards for virgin and
extra virgin oils, allows significant flexibility in their composition.

4.2. Ruleset classifiers

Based on visual inspection of individual coefficients, it is not pos-
sible to separate extra virgin samples from virgin. However, there are
clearly subtle differences between the response of each sensor; for ex-
ample, Abs1 MQ3 and Thetal MQ2, and more detailed analysis of the
results exposes weighted combinations of coefficients which allows

Table 2
Statistical analysis of MQ2 Abs1 results.
MQ2 Abs1 Virgin Extra Virgin Blends Orujos Fresh Air
Mean 116883.9 123013.5 88736.1 71057.5 66182.83
Stnd Dev 11096.96 14244.58 17031.56 7943.204 11445.79
68% Mean+1 SD 127980.9 137258.1 105767.7 79000.71 77628.63
Mean—1 SD 105,787 108,769 71704.53 63114.3 54737.04
95% Mean +2 SD 139077.9 151502.7 122799.2 86943.91 89074.42
Mean —2 SD 94690.02 94524.38 54672.97 55171.1 43291.24
98% Mean +2.33 142739.9 156203.4 128419.6 89565.17 92851.53
Mean —2.33 91028.03 89823.67 49052.55 52549.84 39514.13
99% Mean +2.576 145469.7 159707.6 132609.4 91519.2 95667.2
Mean —2.576 88298.17 86319.51 44862.79 50595.81 36698.47
99.70% Mean + 3 SD 150174.8 165747.3 139830.8 94887.12 100520.2
Mean —3 SD 83593.06 80279.81 37641.4 47227.89 31845.45
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Table 3
Confusion matrix classification results.
Classifier O/P Fresh Air Pomace Blend Virgin Extra
Actual
Fresh Air 8 1 8/10 80%
Pomace 3 13 1 13/17 76%
Blend 1 3 6 1 2 6/13 46%
Virgin 10 10/13 77%
Extra 1 2 14 14/17 82%
Correct 8/12 13/17 6/9 10/13 14/19 51/70 73%
Accuracy 67% 76% 67% 77% 74% 73% Overall
V&X vs B&P 4 < Wrong > 3 < Wrong > 3
8/12 < Correct > 23/26 < Correct > 29/32 60/70
67% < Accuracy > 88% < Accuracy > 91% 86% Overall

greater distinction to be made. Indeed, results from Figs. 3d, and 4b
suggest that it is possible to distinguish oils made of the Hojiblanca
variety of olive from the Picual variety, which is shown in Fig. 9. Of the
16 samples specifically of these 2 varieties, the unit correctly classified
the 8 samples of Picual, and 7 of the 8 samples of Hojiblanca, delivering
a prediction accuracy of 93.75% using a simple classifier based on MQ2
Thetal + MQ135 Thetal, the resulting value being greater than or less
than —1.98. Against the null hypothesis of a 50:50 prediction, from the
65,536 possible outcomes, only 17 could be considered better or the
same, delivering a 1 in 3855 likelihood based on random chance. With a
probability value lower than 0.00026, it is reasonable to reject the null
hypothesis (see Fig. 10).

As another example, the confusion matrix results in Table 3 can be
achieved using the simple decision tree classifier based on only 6
coefficients (MQ2 Absl, MQ5 Cosl, MQ3 Cos3, MQ135 Theta2, MQ4
Abs3 and MQ9 Theta2):

If MQ2 Absl > 89800 Then
If MQ5 Cosl < -51500 Then
CLASS = BLEND
Elself MQ5 Cosl > -25000 Then
CLASS = POMACE
Else
If (MQ3 Cos3 - 4200) > (2260 * MQ135 Theta2) Then
CLASS = VIRGIN Else CLASS = EXTRA
End If
Else
If MQ4 Abs3 < 630 Then
If MQ9 Theta2 < -2.6 Then CLASS = POMACE Else
CLASS = BLEND
Else
If MQ4 Abs3 > 540 Then CLASS = FRESH AIR Else
CLASS = BLEND
End If
End If
This delivers a correct classification of extra virgin 74% of the time, of
virgin 77% of the time, of blend 67% of the time, of pomace 76% of the
time, and of fresh air 67%, giving an overall classification accuracy of
73%. If, “virgin and extra virgin” and “pomace and blend” samples are
grouped in two categories, then, the classification of “virgin/extra
virgin” is correct 91% of the time, and of “pomace/blend” is also cor-
rect 88% of the time, an overall accuracy of 86%. Additionally, the
classifier can be simplified to using only 3 coefficients (MQ2 Abs1, MQ5
Cosl and MQ4 Abs3) to:

If MQ2 Absl > 89800 Then
If MQ5 Cosl < -51500 or > -25000 Then
CLASS = BLEND/POMACE Else CLASS = VIRGIN/EXTRA
Else

If MQ4 Abs3 > 540 Then CLASS = FRESH AIR Else
CLASS = BLEND/POMACE
End If

An example of separation of oil types using MQ3 Cos3 (plotted on the X
axis) and MQ135 Theta2 (plotted at *1000 on the Y axis) can be seen in
Fig. 10. Values of x = MQ3 Cos3, y = MQ135 Theta2 (*1000) which lie
above or to the left of a diagonal line defined by y = (x — 4200)/2.26
are predominantly from extra virgin olive oils, whilst those lying below
or to the right of this line are from virgin oils (the classifier would have
already eliminated most other oil types with the preceding MQ2 Abs1
and MQ5 Cosl tests).

4.3. Fresh air variability

The large variability of “fresh air” readings may be due to variability
of air temperature and humidity, precise details of which were not re-
corded at the time of the experiments. Preliminary analysis of results for
typical high variability sensor coefficients (for example Absl MQ3,
Abs2 MQ2, Thetal MQ2 and Thetal MQ135) against estimated air
temperature and humidity do not show strong correlation, with the
magnitudes of correlation coefficient all below 0.52 with some below
0.2. However other sensor coefficients do show significant correlation,
for example with temperature: Theta2 MQ8 at —0.717; and with hu-
midity: Sin2 MQ135 at 0.816; Theta2 MQ8 at —0.720 and Theta2 MQ2
at —0.869 being the most significant. These particular sensor coeffi-
cients do not however demonstrate particularly wide variability for
“fresh air” samples. Some sensor types are known to be susceptible to
the airborne odours of citrus fruits, perfumes and domestic cleaning
agents etc. any of which could have been present in the air in different
concentrations on different days during experimental runs. In future
experiments, an activated carbon filter will be used on the fresh air
supply to reduce the possibility of these effects.

Many results for VX-O (the oldest oil sample) show significant
variability. Preliminary analysis, including estimated age and tem-
perature of sample, show no obvious correlation. One possibility is due
to potential variation in ambient UV radiation, possibly from sunlight
or fluorescent illumination, as this has been shown to significantly af-
fect the sensitivity of some sensors (Saboor et al., 2016).

This variability is also true for some coefficients of B-O, which tends
to give results more typical of virgin oils than pomace oils. However,
chemical analysis of B-O does show that it is indeed close to formal
classification as a virgin oil. Further, blended oil B-Y shows significant
variability for several coefficients.

4.4. Future improvements and applications

For future experiments: the number of points in the heater cycle
should be fully aligned with the DFT analysis; a wider range of PWM
swing should be tried (20%-80%-20%) (however extending this in-
vokes a trade-off between enhanced temperature operating range and
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response time at any particular temperature, or extending the overall
cycle time); and improvements made to reduce potential effects from
environmental factors such as UV light levels and “fresh air” con-
taminants such as operating the equipment in a UV opaque enclosure
and using activated carbon filters on the fresh air supply. Specific
measurements of air temperature and humidity and sample tempera-
ture must be made, possibly using a DHT22 sensor in the sensor
chamber and a waterproof DS18B20 sensor in the sample chamber.
Whilst DFT analysis requires more computing power than is practically
available on the Arduino Nano°, the PC can easily be replaced by a low
cost 32 or 64 bit processor system such as a Raspberry Pi Zero™ with
local SD card storage and a small LCD display, raising total component
costs from 30 euro to around 50 euro. If only MQ3 sensors continue to
show significant sinusoidal deformity, it may be possible to use simpler
analysis methods, such as noting peaks and troughs of responses to
assess amplitude and phase. This would then be possible within the
Arduino 8 bit-processor alone.

The next stage of the project is to build four more units to test the
manufacturing repeatability of the MQ sensors. Once complete, field
trials are planned for a range of applications using this technology in-
cluding detection of effluent treatment plant malfunction and beehive
monitoring, to see if there is any correlation between hive and/or lo-
cality VOC profiles and the early onset of Nosema Ceranae, believed to
be linked to beehive de-population. The data could also assist in hive
logistics with respect to optimal placement and timing for both crop
pollination and honey production. The extensive (currently around 1.5
million data points) raw sensor value datasets will be made publicly
available after publication to facilitate additional analysis.

5. Conclusions

Based on these results, the unit appears capable of a high degree of
accurate prediction (in the region of 90%) when asked to distinguish
between the group “virgin/extra virgin” and the group “blend/pomace”
oils. If more detailed prediction is required, accuracies decline to the
67-77% range. However a specific test to discriminate between the
Hojiblanca and Picual olive varieties, based on the phase variation of
MQ2 and MQ135 responses, delivered a 93.75% success rate with a
probability against random chance of less than 0.00026. This is a sig-
nificant beyond the 3 sigma level.

The use of sinusoidal heater voltages clearly improves the sensitivity
of some commercially available MOQ sensors and their response/drift
ratios. Improved selectivity is clearly seen in MQ3 response waveforms,
whilst DFT analysis shows there is information content relevant to olive
oil classification in many higher order frequency coefficients.

Despite the low component costs and general simplicity of this de-
vice, the use of more sophisticated software techniques such as sinu-
soidal sensor excitation schedules and DFT data analysis methods, seem
to achieve some noteworthy results. Whilst not delivering any form of
recognised chemical composition analysis, by effective pattern
matching, the device can be trained to recognize a range of “odour
signatures”. Given its low cost, the device clearly has significant po-
tential in many other fields of study.

Further experiments are planned in which air temperature and hu-
midity, and oil sample temperature will be recorded to see if compen-
sation is possible to reduce sample response variability.
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